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Introduction

Qualitative Comparative Analysis (QCA) is becoming increasingly popular with social

scientists across disparate areas of research. Its suitability for analyzing set-theoretic

instead of correlational hypotheses has been one of the main reasons for its proliferation.

In particular, applications from sociology (e.g., Amenta and Halfmann, 2000; Brown

and Boswell, 1995; Dixon, Roscigno and Hodson, 2004; Hodson, Roscigno and Lopez,

2006) and political science (e.g., Avdagic, 2010; Berg-Schlosser, 2008; Lilliefeldt, 2012;

Thiem, 2011) continue to top the list of publication figures (Thiem and Duşa, 2012b).

For about ten years now, however, QCA has also diversified into a set of distinct

variants. Textbooks and applied research now differentiate between crisp-set QCA

(csQCA) (Rihoux and De Meur, 2009), multi-value QCA (mvQCA) (Cronqvist and

Berg-Schlosser, 2009) and fuzzy-set QCA (fsQCA) (Ragin, 2009). Each of these vari-

ants is associated with a specific set-data type - crisp sets for csQCA, multi-value sets

for mvQCA and fuzzy sets for fsQCA - whose analysis has required different software

with tailored routines. Until recently, the fs/QCA software (Ragin and Davey, 2009)

has been the sole option for fsQCA and mvQCA could only be handled by Tosmana

(Cronqvist, 2011), but either software has been capable of processing csQCA from the

beginning. More recently, the fuzzy package for STATA (Longest and Vaisey, 2008) has

been introduced as an alternative to fs/QCA and the two R packages QCA (Duşa and

Thiem, 2012) and QCA3 (Huang, 2012) now also offer extensive functionality for all

three QCA variants. Although software functionality has differed considerably, end-

users have almost always been able to carry out all the steps which their analyses have

necessitated.

Despite many methodological developments over the last decade, however, one con-

siderable problem has hitherto been left unaddressed. If the data did not fit the set

types associated with any of its three variants, QCA could either not be employed

at all or researchers were forced to accept a loss of information by recalibrating their

sets into a processable format. Most significantly, while data types for mvQCA and

csQCA could be reconciled in Tosmana and those for fsQCA and csQCA in fs/QCA,

multi-value and fuzzy sets have been incongruous. The theoretical dissolution of this

incompatibility is the secondary objective of this paper.

The primary objective pushes the argument further. It is to be demonstrated

that all three QCA variants can in fact be treated as special cases of a more general

variant, which shall be referred to as generalized-set QCA (gsQCA). At the core of

gsQCA is the multi-level fuzzy set, a set-data type which not only combines the three

existing ones under a single framework, but also allows to retain the established truth
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table construction and Boolean minimization procedures. In this connection, it is also

to be illustrated that neither does mvQCA offer a middle way between csQCA and

fsQCA (Herrmann and Cronqvist, 2009), nor is the most serious point of criticism

raised against it by Schneider and Wagemann (2012) as well as Vink and van Vliet

(2009) methodologically justified (Thiem, forthcoming). mvQCA fits squarely into the

set-theoretic approach of its two sister variants.

The argument is structured around three main sections. Firstly, the debate on the

commonalities and differences between csQCA, mvQCA and fsQCA is reviewed. The

second section then introduces an approach to combining the existing crisp-set, multi-

value and fuzzy-set data types in a single analysis. Finally, the third section generalizes

the method illustrated in the preceding section by introducing gsQCA. This consecutive

approach is taken for a simple reason. The combination of all existing set-data types

in a single analysis is novel, but still adheres to a set of common rules within which

current set-theoretic methodology operates, such as the single-membership principle.1

This will not hold true any more in gsQCA. The conclusions recapitulate the argument.

The State of the Debate

Crisp-set QCA (csQCA), introduced to a wider audience of social scientists by Ragin

(1987), is the first of the three variants to have appeared in the toolbox of comparative

social science methodology.2 Until the publication of Ragin (2000), csQCA was still

referred to as QCA because back then no ambiguities as to what the acronym denoted

had existed. With twenty applications in published journal articles in 2011, it remains

the most-often applied variant (Thiem and Duşa, 2012a).

The roots of csQCA lie in electrical engineering, where algorithms have been de-

veloped for reducing switching circuits to their most economical form. Analogously,

Ragin’s intention was to simplify complex social-scientific data in a holistic manner

using the switching algebra of electrical engineering. Switching algebra, which is just

one branch of Boolean algebra, is fundamentally different in some important respects

from the linear algebra that underlies the vast majority of statistical models which

are usually applied in social science research. Many special cases of a Boolean algebra

exist, such as propositional logic, switching algebra and set algebra, but any set S of

elements {S1,S2,S3, . . .} and two binary operations + (Boolean sum) and · (Boolean

product) form a Boolean algebra if, and only if, the operations are commutative:

S1 + S2 = S2 + S1 and S1 · S2 = S2 · S1; (P1)
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each of the operations distributes over the other:

S1 · (S2 + S3) = S1 · S2 + S1 · S3 and S1 + S2 · S3 = (S1 + S2) · (S1 + S3); (P2)

identity elements 0 and 1 exist for + and · :

0 + S1 = S1 and 1 · S1 = S1; (P3)

and for each S1 ∈ S there exists an s1 ∈ S (complement) such that:

S1 + s1 = 1 and S1 · s1 = 0. (P4)

Most notably, Boolean-algebraic distributivity is false in linear algebra. Postu-

late (P4) relates to the defining characteristic of csQCA in that cases can only have

either full membership in a set or none at all. Expressed in set-algebraic notation, the

union S1∪s1 of literals S1 and s1 of some set S1 form the universal set U, whereas their

intersection S1∩s1 the empty set ∅. From these four postulates, a number of theorems

can be derived, the two most important of which in the context of the set-algebraic

logic of QCA lead to the elimination of as many sets as possible from Boolean product

terms and the elimination of as many terms as possible from a Boolean sum of product

terms. More precisely, for any sets S1, S2, S3 that form part of a Boolean algebra,

S1 · S2 + s1 · S2 = S2 and S1 · S2 + s1 · S3 + S2 · S3 = S1 · S2 + s1 · S3 (cf. McCluskey,

1965: 114ff.).

If U represents the universal set with any subset denoted by S, S can itself be

represented by its characteristic function µS as given in Equation (5). This function

describes some general property shared by all subsets of U (Klir, St. Clair and Yuan,

1997: 63).

µS(u) =







1 if u ∈ S

0 if u /∈ S
(5)

If the Boolean-algebraic system is restricted to the two values 0 and 1, these num-

bers may not only represent symbolic indicators of membership and non-membership

in S, but also numerical indicators of the degree to which some case ui ∈ U also belongs

to S. Mapping cases into the binary set B = {0, 1} by means of characteristic func-

tions therefore allows the representation of superset and subset relations as functional

inequalities of the form µS1(u) ≤ µS2(u).

Operations on sets can also be written as operations on their characteristic function.
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For example, the characteristic function of the union of sets S1 and S2 can be expressed

by means of the parallel maximum of the individual characteristic functions as given

in Equation (6).

µS1∪S2(u) = max [µS1(u), µS2(u)] (6)

Analogously, the characteristic function of the intersection of S1 and S2 can be

constructed using the parallel minimum of the individual characteristic functions as

given in Equation (7).

µS1∩S2(u) = min [µS1(u), µS2(u)] (7)

The list of characteristic functions involving the conjunction of all literals of the

relevant subsets {S1,S2,S3, . . .} ∈ U and a summary statement about the outcome

value of each element in this list is called a truth table (cf. Ragin, 1987: 87). There exist

d =
∏k

j=1 pj characteristic functions of p-valued k input sets. These functions are more

commonly referred to in QCA as configurations. In the social sciences, configurations

represent exhaustive combinations of properties characterizing units of analysis, such as

people, organizations or states. For illustration, a hypothetical truth table with three

input setsC1, C2 andC3, also called conditions, and their corresponding outcome value

OUT (also called truth value) is presented in Table 1. Three binary-value conditions

yield 23 = 8 configurations, each of which is indexed under Ca. The minimum number

of cases n that is usually required for the respective outcome value is given in addition,

but it is no essential part of the truth table.

Table 1: Hypothetical Truth Table

Ca C1 C2 C3 OUT n

1 1 1 1 1 ≥ 1

2 1 1 0 1 ≥ 1

3 1 0 1 1 ≥ 1

4 1 0 0 1 ≥ 1

5 0 1 1 0 ≥ 1

6 0 1 0 C ≥ 2

7 0 0 1 ? 0

8 0 0 0 ? 0

A condition is the analogue of an independent variable, but the outcome value

is not analogous to the dependent variable. The dependent variable is captured by
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the outcome set, which does not show up in the truth table. Instead, the outcome

value represents a truth value indicating whether the evidence is consistent with a

hypothesis about the existence of a subset relation between each configuration and the

outcome set or not. Configurations 1-4 are true and support this hypothesis (OUT

= 1), configuration 5 is false and does not (OUT = 0). Mixed evidence exists for

configuration 6 (OUT = C). If at least two cases conform to one configuration, but

the evidence neither sufficiently supports nor confutes the hypothesis, contradictions

arise. No empirical evidence at all exists for configurations 7 and 8 (OUT = ?). If a

particular configuration contains no or too few cases, it is called a logical remainder.

The canonical (Boolean) sum f1 resulting from the truth table presented in Table 1

is given by Equation (8). It consists of four fundamental (Boolean) products, each of

which corresponds to a true configuration from Table 1.

f =

C1

C1 ·C2 ·C3 +

C2

C1 ·C2 · c3 +

C3

C1 · c2 ·C3 +

C4

C1 · c2 · c3 (8)

If two such products differ on only one condition, then this condition is redundant

and can be eliminated so that a simpler term results. Equation (8) can be reduced

in two passes as shown in Figure 1. In the first pass, the four fundamental products

with three literals can be reduced to four simpler terms with just two literals. In the

second pass, these four terms can then be reduced at once to a single term with just

one literal. No further reduction is possible. Condition C1 is the only factor which is

essential in explaining the outcome (C1 → O).

C1 ·C2 ·C3 C1 ·C2 · c3 C1 ·C2 ·C3 C1 · c2 · c3

C1 ·C2 C1 · c2

C1 ·C3 C1 · c3
C1

Figure 1: Boolean minimization of Equation (8).

While the logic of classical crisp sets forms the basis of many mathematical concepts,

a considerable number of social-scientific concepts do not neatly fit into the binary logic

of a Boolean algebra. In order to address this shortcoming, Zadeh (1965) proposed

the concept of the fuzzy set, which is at the core of the fsQCA variant. The most

important feature of fuzzy set theory is the invalidity of the fourth Boolean-algebraic

postulate (P4). In contrast to membership in a crisp set, membership in a fuzzy set

5



is not limited to the binary set B = {0, 1} but extends to the unit interval U = [0, 1].

With fuzzy sets, it becomes possible for a case to have non-zero membership in S and

its complement s at the same time. In this sense, a crisp set represents a special case

of a fuzzy set (Clark et al., 2008: 57).

The fsQCA analogue of the characteristic function in csQCA is the membership

function. As the only restriction on membership functions is a unit interval co-domain,

they can take an infinite number of forms. For example, the membership function

suggested by Ragin (2008) and used in the fs/QCA software (Ragin and Davey, 2009)

is given in Equation (9), where τe denotes the threshold for full exclusion from S, τc

the crossover threshold at the point of maximally ambiguous set membership in S and

τi the threshold for full inclusion in S.

µS(u) =















1/

(

1 + e
−
[

(u−τc)
(

− log(19)
τe−τc

)]

)

if u < τc,

1/

(

1 + e
−
[

(u−τc)
(

log(19)
τi−τc

)]

)

if u ≥ τc

(9)

All variants of QCA require the construction of truth tables, but with fuzzy-set

data, truth tables cannot be constructed directly because the possible number of con-

figurations would be infinite. The truth table algorithm introduced in Ragin (2008)

thus considers truth table configurations as the outer corners of a vector space. Al-

though each case can have membership in one, several or all dimensions of this space,

it can only be a strong instance, that is, have membership above 0.5, of one configu-

ration. As usually more cases than only strong instances have some membership in a

configuration, its outcome value depends on the partial configuration membership of

all cases.

About four years after fsQCA had been introduced, Cronqvist (2004) presented

the Tosmana software for processing multi-value sets. The first substantive application

of mvQCA has come from Balthasar (2006). Since then, however, only six further

articles have been published. This relatively low number may be explained by the

fact that, so far, mvQCA has been viewed with a considerable degree of suspicion in

the methodological literature (cf. Schneider and Wagemann, 2012; Vink and van Vliet,

2009). Why this suspicion is unjustified is explained in more detail elsewhere (Thiem,

forthcoming), but mvQCA is a generalization of csQCA, albeit on a dimension that is

different from the one which generalizes csQCA to fsQCA. How these dimensions relate

to each other nonetheless will be fully elaborated in the remainder of this article.

After the introduction of fsQCA (Ragin, 2000) and mvQCA (Cronqvist and Berg-

Schlosser, 2009; Cronqvist, 2011), the classical approach to configurational comparative
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thinking popularized by Ragin (1987) has come to be referred to as csQCA. Together,

these three variants now make up the entire set of QCA techniques that have been used

in more than 230 substantive applications published in academic journal articles since

1984 (Thiem and Duşa, 2012b: 3). The next section will demonstrate that 1) csQCA,

mvQCA and fsQCA are closer related to each other than is usually acknowledged in

the literature and 2) that mvQCA fits squarely into the framework of set-theoretic

methodology.

Combining csQCA, mvQCA and fsQCA

This section demonstrates how csQCA, mvQCA and fsQCA can be combined in a single

analysis. In order to reconcile the different notational systems and terminologies that

have so far existed, three definitions are given first. The set data structure that has

traditionally been referred to as a crisp set becomes a binary-level crisp set, a multi-

value set a multi-level crisp set, and a fuzzy set a binary-level fuzzy set. Note that the

prefix binary-level does not refer to the number of distinct states of set membership but

the number of distinct states of extreme set membership. Even though membership in

a fuzzy set is graded, it only has two extreme states for the concept that is represented

by this set.

Now that the three basic set structures have been defined, a common notational

system is required. The most serious point of criticism raised by Vink and van Vliet

(2009), and echoed by others (Schneider and Wagemann, 2012), has been that mvQCA

is difficult to understand in set-theoretic terms. Such difficulties do not arise from

mvQCA as a method, but they are a consequence of the different systems of notation

currently used in csQCA and fsQCA on the one hand, and mvQCA on the other.

Traditionally, membership notation has been used for csQCA and fsQCA, but category

notation for mvQCA. Parallels have often been drawn between the numbers used in

these two systems, although they are not at all comparable, thereby leading to much

confusion on the side of applied QCA users.

Membership and category-notation can be unified by putting them on a common

denominator. The resulting system based on such a common denominator will be re-

ferred to as level-score notation in gsQCA. Level-score notation borrows from category

notation in that curly brackets indicate distinct qualitative values. In addition, how-

ever, level-score notation appends to each level the set membership score of the case

in the distinct level. When expressed in general terms, the set membership score si of

a case i in category {vl} of set Sj is given by some membership function µSj
(xi {vl}),

where i = 1, 2, . . . , n, j = 1, 2, . . . , k and l = 1, 2, . . . , p. The level {vl} can be des-
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ignated by any symbol as long as it is a unique identifier within j. The expression

{vl} si is then called a level-score term, consisting of a distinct category identifier and

a membership score.

Table 2 presents ten hypothetical cases i = 1, 2, . . . , 10, three conditions Cj with

j = 1, 2, 3 and an outcome set O. Condition C1 is a binary-level crisp set with two

levels and C2 a multi-level crisp set with three levels. Their membership functions

µC1(xi{0, 1}) and µC2(xi{α, β, γ}) have mapped the base variable values xi of cases

i = 1, 2, . . . , 10 into the binary set B = {0, 1}. Condition C3 as well as the outcome

set O, in contrast, are proper binary-level fuzzy sets. Their respective membership

functions µC3(xi{0, 1}) and µO(xi{0, 1}) have mapped the base variable values into

the unit interval U = [0, 1]. While membership functions play an important role in the

set calibration process, their exact specification is irrelevant for the argument.

For example, the set membership score of i = 1 on condition set C1, level v2 = 1,

is given by µC1(x1{v2}) = C1{v2}c1 = C1{1}0. In contrast, its set membership score

on the same condition but level v1 = 0, is given by µC1(x1{v1}) = C1{v1}c1 = C1{0}1.

The advantage of binary-level crisp set data is that membership scores for the other

level need not be explicitly provided because with only two levels, the set membership

score in the other level is always identified by Boolean negation. More precisely, for

any l = z of binary-level crisp set S, S{vz}si = 1− S{vl 6=z}si. In the case of C1, level

v1 = 0 thus carries the meaning of applying the logical NOT operator on C1{1}.
3

With regards to the binary-level fuzzy set C3, the set membership score for i =

1, level v2 = 1 is given by µC3(x1{v2}) = C3{v2}c1 = C3{1}0.4, whereas its set

membership score for level v1 = 0 is given by µC3(x1{v1}) = C3{v1}c1 = C3{0}0.6.

As in the case of binary-level crisp sets, membership scores for the other level of a

binary-level fuzzy set need not be explicitly provided in Table 2 because two levels

allow full membership score identification by means of Boolean negation.
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Table 2: Data Table of Set-Level and Configuration Membership Scores

Set-Level Data Configuration Ca = ... from Table 3

i C1 C2 C3 O 1 2 3 4 5 6 7 8 9 10 11 12

1 {1}0 {α}1 {1}0.4 {1}0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.4 0.0 0.0

2 {1}0 {γ}1 {1}0.2 {1}0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.2

3 {1}1 {β}1 {1}0.8 {1}0.5 0.0 0.8 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4 {1}1 {β}1 {1}1.0 {1}0.2 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5 {1}1 {γ}1 {1}0.6 {1}1.0 0.0 0.0 0.4 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0

6 {1}0 {γ}1 {1}0.1 {1}0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.1

7 {1}1 {α}1 {1}0.7 {1}0.3 0.3 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

8 {1}1 {α}1 {1}0.9 {1}0.4 0.1 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9 {1}0 {β}1 {1}1.0 {1}0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

10 {1}1 {γ}1 {1}0.0 {1}1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

|Ca| 0.4 1.8 1.4 1.6 0.2 0.6 0.6 1.0 1.7 0.4 0.0 0.3

|Ca ∩O{1}| 0.4 0.7 1.4 0.7 0.2 0.6 0.6 0.0 1.0 0.4 0.0 0.2

|Ca ∩O{0}| 0.4 1.3 0.4 0.4 0.2 0.4 0.3 1.0 0.9 0.3 0.0 0.3
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Finally, the set membership score for i = 1 on condition C2, level v1 = α, is given

by µC2(x1{v1}) = C2{v1}c1 = {α}1. In contrast, its set membership score in levels

v2 = β and v3 = γ is given by µC2(x1{β, γ}) = C2〈{β}c1{γ}c1〉 = C2〈{β}0{γ}0〉 =

C2{β, γ}0.
4 No membership scores have to be provided for levels v2 and v3 because

the multi-level set is not only crisp but its levels are also mutually exclusive. Unlike

for binary-level sets, however, there is no other way of representation for C2 that is

as efficient as that used in Table 2. The reason is simply that if it is known of which

category a case is a member, it is also known that it cannot be a member of another

category. More precisely, for any l = z, {vz}ci = 1− ({v1}ci + {v2}ci + . . .+ {vl 6=z}ci +

. . .+ {vk}ci). The opposite logic does not hold because even if the category of which a

case is not a member was identified, the information would be insufficient to determine

the category of which it was a member. As a result, more information is needed and the

representation of this information can never be more efficient than when the member

category is used because exactly p− 1 level-score terms would be required.

In summary, if crisp or fuzzy sets are also binary-level, or if multi-level sets are also

crisp, mutually exclusive and represented by membership-identifying level-score terms,

all level-specific set membership scores are fully determined. With the common nota-

tional system of level-scores, a hierarchical representation of subset relations between

these three different types of sets becomes possible. It is shown in Figure 2.

Binary-Level Fuzzy Set

e.g.: C3 {v2} c1 = C3 {1} 0.4

Multi-Level Crisp Set

e.g.: C2 {v1} c1 = C2 {α} 1

Binary-Level Crisp Set

e.g.: C1 {v2} c1 = C1 {1} 0

Figure 2: Hierarchy of Set-Data Types

Binary-level crisp sets are special cases of both binary-level fuzzy sets and multi-level

crisp sets on different dimensions. Binary-level crisp sets share with multi-level crisp

sets the characteristic of dichotomous membership scores - either 0 or 1, and they share

with binary-level fuzzy sets the characteristic of having only two categories. Binary-

level fuzzy sets and multi-level crisp sets, however, share no commonalities because

each has a dimension that the other is not able to incorporate. With regards to the
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point of criticism raised by Vink and van Vliet (2009) that the status of mvQCA as a

distinct set-theoretic method stands in doubt, level-score notation thus illustrates more

clearly that mvQCA is, in fact, a generalization of csQCA and therefore a full-fledged

member of the QCA family of comparative configurational techniques.

With complete information on conditions C1, C2, C3 and the outcome set O,

the truth table can be derived. It consists of d =
∏k

j=1 pj configurations, where pj

is again the total number of levels in set j. The complete truth table of the data

presented in Table 2 is shown in Table 3. It lists all d = 12 configurations and the

associated outcome value (OUT) for each level of O. True configurations are coded

as OUT = 1, false configurations as OUT = 0 and logical remainders as OUT =

?. A configuration’s outcome value is determined by the number of cases with a set

membership score of more than 0.5 in it (n) as well as its sufficiency inclusion score

(InclS).
5 The membership scores of each case in each of the 12 configurations Ca with

a = 1, 2, . . . , 12 are shown in the right part of Table 2. Cells with a gray background

indicate the highest membership of a case in the associated configuration that exceeds

a value of 0.5. The scalar cardinality |Ca| of the configuration represented by Ca is

calculated as given in Equation (10) and presented in Table 2.

|Ca| =
n

∑

i=1

min[C1{vl}ci,C2{vl}ci,C3{vl}ci] (10)

The scalar cardinality |Ca ∩O{vl}| of each configuration and the respective level of

the outcome set O{vl} is given in Equation (11) and also presented in Table 2.

|Ca ∩O{vl}| =
n

∑

i=1

min[min[C1{vl}ci,C2{vl}ci,C3{vl}ci],O{vl}oi] (11)

The sufficiency inclusion score of each configuration InclS(Ca) is the ratio between

the two as specified in Equation (12) and presented under column InclS in Table 3 for

each level of O.

InclS(Ca) =
|Ca ∩O{vl}|

|Ca|
(12)

All outcome values given in Table 3 should be uncontroversial. No score apart from

those indicating perfect inclusion could be considered as indicating quasi-sufficiency

(e.g. 0.85).6 The number of cases required in each configuration to not be coded as

a logical remainder is a single case because with only ten cases the total number is

rather small. Configuration C11 shows no inclusion score because no case has a positive

membership in it. Expressed differently, |C11| = 0. The canonical sum of fundamental
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Table 3: Truth Table

InclS OUT a

Ca C1 C2 C3 n O{1} O{0} O{1} O{0} i

1 1 α 0 0 1.00 1.00 ? ? -
2 1 β 1 2 0.39 0.72 0 0 3, 4
3 1 γ 0 1 1.00 0.29 1 0 10
4 1 α 1 2 0.44 0.25 0 0 7, 8
5 1 β 0 0 1.00 1.00 ? ? -
6 1 γ 1 1 1.00 0.67 1 0 5
7 0 α 0 1 1.00 0.50 1 0 1
8 0 β 1 1 0.00 1.00 0 1 9
9 0 γ 0 2 0.59 0.53 0 0 2, 6
10 0 α 1 0 1.00 0.75 ? ? -
11 0 β 0 0 - - ? ? -
12 0 γ 1 0 0.67 1.00 ? ? -
a number of cases cut-off: 1; inclusion cut-off: 0.9

product terms which is to be explained for all true configurations with respect to O{1}

is given by Equation (13).

f{1} =

C3

C1{1}C2{γ}C3{0}+

C6

C1{1}C2{γ}C3{1}+

C7

C1{0}C2{α}C3{0} (13)

Using the theorems of Boolean algebra, canonical sum (13) can be reduced to

minimal sum (14).

C1{1}C2{γ}+C1{0}C2{α}C3{0} → O{1} (14)

In usual QCA parlance, this means that the second level of C1 (the presence of

C1) in conjunction with the third level of C2 (the presence of C2{γ}), or the first level

of C1 (the absence of C1) in conjunction with the first level of C2 (the presence of

C2{α}) and the first level of C3 (the absence of C3) are sufficient for the second level

of O (the presence of O).

In summary, mvQCA can be easily combined with csQCA and fsQCA if the set-data

type that is associated with each variant is brought into the standardized system of

level-score notation. Parameters of fit remain as valid as truth table construction and

minimization procedures. The next section will now show how to extend this system

further to include multi-level fuzzy sets, which reconcile the two dimensions that are

covered separately by binary-level fuzzy sets and multi-level crisp sets. In order to

12



distinguish them from the existing variants, analyses with multi-level fuzzy sets will be

referred to as generalized-set Qualitative Comparative Analysis (gsQCA).

Generalized-Set QCA

The approach taken by gsQCA builds on multi-level fuzzy sets, which represent the

generalization of the three other set-data types introduced in the preceding section.

A multi-level fuzzy set is more general because it combines the category dimension

of multi-level crisp sets with the graded membership dimension of binary-level fuzzy

sets. Figure 3 illustrates how some multi-level fuzzy set Sj should be conceived of

geometrically. Only the first three levels of Sj can be visualized, but theoretically the

number of levels is not limited.

v2

v1

v3

b

r

l

0

1

v1 v2 v3 v...

{vl} si

Sj

i = 1

i = 2

i = 3
b b b

l

l lr

r r

Figure 3: Geometric Representation of A Multi-Level Fuzzy Set

In Figure 3, three cases are shown, each represented by a different plot marker. A

diamond designates case i = 1, a square case i = 2 and a circle i = 3. The three

levels of Sj, {vl} with l = 1, 2, 3 form a three-dimensional vector space in the unit

interval. In contrast to multi-level crisp sets, which have mutually-exclusive levels and

are restricted to membership or non-membership, a case in a multi-level fuzzy set can

possess membership in any number of levels, and to different degrees, at that. For

example, case i = 1 can only be distinguished by its notation from a case in a multi-

level crisp set because it has full membership in the first level, but no membership in

the second and third level of Sj . In contrast, case i = 2 has no membership in the first

level, but it is a full member of the second and third level. Case i = 3 most clearly

13



reflects the characteristics of a multi-level fuzzy set, with a partial membership of 0.5

in each of Sj’s three levels. Equation (15) summarizes these relations in level-score

notation.7

1: Sj〈{v1}1.0{v2}0.0{v3}0.0〉

2: Sj〈{v1}0.0{v2}1.0{v3}1.0〉

3: Sj〈{v1}0.5{v2}0.5{v3}0.5〉
(15)

As a specific example of a multi-level fuzzy set, imagine the set “employment sta-

tus” ES with the three distinct levels “unemployed” ES{u}, “employed” ES{e} and

“self-employed” ES{s}. Now imagine two people, p1 and p2, the former of whom only

works two days a week for a company, but is otherwise at home for childcare, whereas

the latter works four days a week for a company, but has an independent business on

Fridays. As a matter of fact, it is impossible to describe either employment status

accurately by using a binary-level fuzzy set that can only represent one category. Even

less suitable is a binary-level crisp set because none of the two cases fully matches

any of the categories. Also a multi-level crisp set is inappropriate because each case’s

employment status cannot be captured by one category only. A multi-level fuzzy set

solves this problem. Using level-score notation, p1 is most accurately described by

p1: ES〈{u}0.6{e}0.4{s}0〉, p2 by p2: ES〈{u}0{e}0.8{s}0.2〉. Note that level member-

ship scores in multi-level fuzzy sets need not sum up to unity. If the standard working

week consists of five days over which membership scores yield unity - a realistic as-

sumption - but p2 is self-employed on Fridays as well as Saturdays, the most accurate

description of this case is p2: ES〈{u}0{e}0.8{s}0.4〉.
8

The concept of the multi-level fuzzy set has several consequential implications,

from the perspective of set-theoretic principles in general, and for QCA in particular.

Boolean negation does not apply to multi-level fuzzy sets because a case’s membership

in any category of such a set is unrelated to its membership in all other categories. How

much a person is unemployed is independent of the degree to which she is employed

if there is a distinction between being employed and being self-employed. As a result,

the notational representation of a multi-level fuzzy set has to include all possible level-

score terms, not just any single term as is the case for binary-level crisp and fuzzy

sets, or the term that represents the category in which a case has full membership as

at least needed for multi-level crisp sets. Figure 4 illustrates the extended hierarchy

of set-data types now in place under gsQCA. The addition of multi-level fuzzy sets

includes as direct special cases both binary-level fuzzy sets and multi-level crisp sets,
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Multi-Level Fuzzy Set

e.g.: C∗
2〈{v1} c1 {v2} c1 {v3} c1〉 = C∗

2〈{a} 0.4 {b} 0.2 {c} 0.9〉

Binary-Level Fuzzy Set

e.g.: C3 {v2} c1 = C3 {1} 0.4

Multi-Level Crisp Set

e.g.: C2 {v1} c1 = C2 {α} 1

Binary-Level Crisp Set

e.g.: C1 {v2} c1 = C1 {1} 0

Figure 4: Extended Hierarchy of Set-Data Types

and indirectly also binary-level crisp sets. In consequence, multi-level fuzzy sets break

down the dimensional incompatibility between multiple levels and graded membership.

A new data table incorporating the multi-level fuzzy set C∗
2 is presented in the

left part of Table 4. This set incorporates the three levels C∗
2{a}, C

∗
2{b} and C∗

2{c}.

Condition C1 remains a binary-level crisp set and C3 as well as the outcome set O

binary-level fuzzy sets.
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Table 4: Data Table of Set-Level and Configuration Membership Scores, with Multi-Level Fuzzy Set

Set-Level Data Configuration Ca = ... from Table 5

i C1 〈 C∗
2 〉 C3 O 1 2 3 4 5 6 7 8 9 10 11 12

1 {1}0 {a} 0.1 {b} 0.2 {c} 0.7 {1}0.4 {1}0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.6 0.1 0.2 0.4

2 {1}0 {a} 0.7 {b} 0.1 {c} 0.4 {1}0.2 {1}0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.1 0.4 0.2 0.1 0.2

3 {1}1 {a} 0.5 {b} 0.7 {c} 0.1 {1}0.8 {1}0.5 0.2 0.7 0.1 0.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0

4 {1}1 {a} 0.1 {b} 0.4 {c} 0.8 {1}1.0 {1}0.2 0.0 0.4 0.0 0.1 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0

5 {1}1 {a} 0.9 {b} 1.0 {c} 0.8 {1}0.6 {1}1.0 0.4 0.6 0.4 0.6 0.4 0.6 0.0 0.0 0.0 0.0 0.0 0.0

6 {1}0 {a} 0.7 {b} 0.3 {c} 0.3 {1}0.1 {1}0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.1 0.3 0.1 0.3 0.1

7 {1}1 {a} 0.6 {b} 0.9 {c} 0.8 {1}0.7 {1}0.3 0.3 0.7 0.3 0.6 0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.0
8 {1}1 {a} 0.3 {b} 0.1 {c} 0.4 {1}0.9 {1}0.4 0.1 0.1 0.1 0.3 0.1 0.4 0.0 0.0 0.0 0.0 0.0 0.0

9 {1}0 {a} 0.8 {b} 0.2 {c} 0.8 {1}1.0 {1}0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.8 0.0 0.8

10 {1}1 {a} 0.7 {b} 0.9 {c} 0.6 {1}0.0 {1}1.0 0.7 0.0 0.6 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

|Ca| 1.7 2.5 1.5 2.1 1.9 2.6 1.5 0.6 1.3 1.2 0.6 1.5

|Ca ∩O{1}| 1.7 1.7 1.5 1.8 1.9 1.6 0.9 0.4 1.0 0.3 0.6 0.6

|Ca ∩O{0}| 0.6 1.7 0.5 1.5 0.6 2.0 0.9 0.6 0.8 1.2 0.4 1.4
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The complete truth table that results from applying the truth table algorithm used

in the preceding section to the set-level data in the left part of Table 4 is shown in

Table 5. Notice that, on the one hand, some cases have membership above 0.5 in more

than one configuration as indicated by more than one gray cell in each row of Table 4

and the multiple appearance of the same case identifier in the case column i of Table 5.

For example, case i = 5 has membership in configurations C2, C4 and C6. On the other

hand, however, it can also be observed that case i = 8 has no membership of above 0.5

in any configuration. Generally, if a case’s membership score does not exceed 0.5 in

at least one category of a multi-level fuzzy set, it will not have strong membership in

any truth table configuration. Thus, with multi-level fuzzy sets, not only does Boolean

negation not help in identifying all level membership scores, but also can cases have

membership above 0.5 in more than one configuration or even none at all. This may

seem counter-intuitive at first to most researchers familiar with QCA. However, the

example of people’s employment status above has demonstrated that some cases can

only be suitably represented by assigning partial membership to more than a single

category.

Table 5: Truth Table

InclS OUT a

Ca C1 C∗
2 C3 n O{1} O{0} O{1} O{0} i

1 1 a 0 1 1.00 0.35 1 0 10
2 1 b 1 3 0.68 0.68 0 0 3, 5, 7
3 1 c 0 1 1.00 0.33 1 0 10
4 1 a 1 1 0.86 0.71 1/0 0 5, 7
5 1 b 0 1 1.00 0.32 1 0 10
6 1 c 1 3 0.62 0.77 0 0 4, 5, 7
7 0 a 0 2 0.60 0.60 0 0 2, 6
8 0 b 1 0 0.67 1.00 ? ? -
9 0 c 0 1 0.77 0.62 0 0 1
10 0 a 1 1 0.25 1.00 0 1 9
11 0 b 0 0 1.00 0.67 ? ? -
12 0 c 1 1 0.40 0.93 0 1 9
a number of cases cut-off: 1; inclusion cut-off: 0.85/0.90

In order to further examine the consequences of these features of multi-level fuzzy

sets, consider what happens if the cut-off for the sufficiency inclusion score on whose

basis the outcome value for each configuration is established is set to 0.85 in Table 5.

This value is certainly not below commonly accepted levels. The canonical sum for all
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true configurations with respect to O{1} is then given by Equation (16).

f{1} =

C1

C1{1}C
∗
2{a}C3{0}+

C3

C1{1}C
∗
2{b}C3{0} +

C4

C1{1}C
∗
2{a}C3{1}+

C5

C1{1}C
∗
2{c}C3{0}

(16)

Minimization of these four fundamental products yields the minimal sum with two

prime implicants given in Equation (17). Condition C∗
2 is redundant in the first, second

and fourth, and condition C3 is redundant in the first and third fundamental products.

C1{1}C
∗
2{a}+C1{1}C3{0} → O{1} (17)

If, however, the cut-off for the sufficiency inclusion score is raised to 0.9, C4 drops

out and the reduced canonical sum for the remaining configurations is now given by

Equation (18).

f{1} =

C1

C1{1}C
∗
2{a}C3{0}+

C3

C1{1}C
∗
2{b}C3{0}+

C5

C1{1}C
∗
2{c}C3{0} (18)

Condition C∗
2 is again redundant across these three fundamental products. The

resulting minimal sum is given by Equation (19).

C1{1}C3{0} → O{1} (19)

The minimal sum consists of a single prime implicant that covers three configura-

tions: C1, C3 and C5. However, these configurations only contain i = 10 as their single

strong case. It is the only case that has membership above 0.5 in all configurations.

With multi-level fuzzy sets, complex solutions therefore need not cover at least as many

empirically strong cases as there have been fundamental products in the canonical sum.

It is well possible that a single case conforms to more than one configuration.

While the theoretical implications of multi-level fuzzy sets are not to be underes-

timated, the practical consequences for applied research are to be seen elsewhere. For

one, a relatively small number of social-scientific concepts lend themselves to being

represented as multi-level fuzzy sets. In the vast majority of cases, multi-level crisp

sets will suffice. The main contribution of this article to applied research should thus

be seen in the introduction of a new notational system which allows the joint processing

of either binary-level set structure and multi-level crisp sets.
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Conclusions

This article set out to demonstrate that the distinction between csQCA, mvQCA

and fsQCA which has existed so far in the literature on comparative configurational

methodology can be broken down by reconciling all variants with each other under a

single framework. The approach whereby this is made possible has been referred to as

generalized-set QCA (gsQCA). The fundamental concept of gsQCA is the multi-level

fuzzy set, a set-data type which incorporates the multi-dimensionality of multi-level

crisp sets and the graded-membership principle of binary-level fuzzy sets, so that all

three existing QCA variants become special cases of gsQCA. If all conditions have two

levels, one for the presence and one for the absence of the attribute represented by

the set, for each of which the membership function maps cases into the binary set

B = {0, 1}, gsQCA collapses to csQCA. If at least one condition has more than two

mutually-exclusive levels for each of which the membership function maps cases into

the binary set B = {0, 1}, but in only one of which cases can have membership, and

all remaining conditions have two levels, one for the presence and one for the absence

of the attribute represented by the set, for each of which the membership function

maps cases into the binary set B = {0, 1}, gsQCA becomes mvQCA. If at least one

condition in the data has two levels, one for the presence and one for the absence of the

attribute represented by the set, for each of which the membership function maps cases

into the unit interval U = [0, 1] according to the principle of Boolean negation and all

remaining conditions have two such levels for each of which the membership function

maps cases into the binary set B = {0, 1}, gsQCA turns into fsQCA. With gsQCA,

researchers are therefore not forced any longer to accept a loss of information by having

to turn continuous base variables into binary-level crisp sets when their core conditions

are multi-level crisp sets. The replacement of membership and category-notation by

gsQCA’s level-score notation allows the reconciliation of these two set-data types.

The introduction of gsQCA opens up a new perspective on the QCA family of

configurational comparative methods. Most significantly, the three existing variants

should not be seen any longer as standing in competition, but as being special cases

of a general QCA approach for the analysis of specific combinations of set-data types.

No substantial disadvantages result from this generalization. Under gsQCA, all pa-

rameters of fit (mainly inclusion and coverage), truth table construction and Boolean

minimization procedures, as well as the derivation of complex, intermediate and parsi-

monious solutions remain valid. If there is a cost to be found, it is the more elaborate

system of level-score notation which is required under gsQCA. In consideration of the

added benefit the method brings, however, this should be but a symbolic price to pay.
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Notes

1According to the single-membership principle, each case can have a membership score of at most

0.5 in more than one truth table configuration, but it can only have membership above 0.5 in a single

configuration.
2To the knowledge of the author, the first application of csQCA has been presented by Ragin,

Mayer and Drass (1984).
3The logical NOT is usually indicated in csQCA and fsQCA either by lower-case letters, in contrast

to upper-case letters, by a tilde sign preceding the set name or a prime. These indicators do not apply

in level-score notation.
4Greek letters have been used for C2 in order to reiterate that the identifier of a level need not be

a numeric value. Angled brackets are used when more than one level-score term is provided for a case

within an expression.
5Inclusion corresponds to what Ragin (2006) refers to as consistency.
6The outcome value coding of the truth table is not based on probabilistic criteria.
7These expressions may be collapsed to 1: Sj〈{v1}1.0{v2, v3}0.0〉, 2: Sj〈{v1}0.0{v2, v3}1.0〉 and

3: Sj{v1, v2, v3}0.5.
8As another example, imagine COL to represent the RGB color space with the three additive

primary colors red COL{r}, green COL{g} and blue COL{b} as its three levels. RGB color spaces

closely resemble the human visual system in the perception of colors. Where does “purple” as a case

fit in? The membership score of purple is exactly 0.5 in both COL{r} and COL{b}, but it is 0 in

COL{g}. Using level-score notation, purple is thus identified by purple: COL〈{r}0.5{g}0{b}0.5〉.
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